The LiNnux Users’ Guide

Copyright © 1993, 1994, 1996 Larry Greenfield

All you need to know to start using LINUX, a free Unix clone. This manual covers the basic Unix
commands, as well as the more specific LINUX ones. This manual is intended for the beginning Unix
user, although it may be useful for more experienced users for reference purposes.

UNIX is a trademark of X/Open

MS-DOS and Microsoft Windows are trademarks of Microsoft Corporation

0S/2 and Operating System/2 are trademarks of IBM

X Window System is a trademark of X Consortium, Inc.

Motif is a trademark of the Open Software Foundation

LINUX is not a trademark, and has no connection to UNIX, Unix System Labratories, or to X/Open.
Please bring all unacknowledged trademarks to the attention of the author.

Copyright © Larry Greenfield
427 Harrison Avenue
Highland Park, NJ

08904

leg+@andrew.cmu.edu

Permission is granted to make and distribute verbatim copes of this manual provided the copyright
notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for
verbatim copying, provided also that the sections that reprint “The GNU General Public License”,
“The GNU Library General Public License”, and other clearly marked sections held under seperate
copyright are reproduced under the conditions given within them, and provided that the entire
resulting derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language under
the conditions for modified versions. “The GNU General Public License” and “The GNU Library
General Public License” may be included in a translation approved by the Free Software Foundation
instead of in the original English.

At your option, you may distribute verbatim and modified versions of this document under the
terms of the GNU General Public License, excepting the clearly marked sections held under seperate
copyright.

Exceptions to these rules may be granted for various purposes: Write to Larry Greenfield at
the above address or email leg+@andrew. cmu. edu, and ask. It is requested (but not required) that
you notify the author whenever commercially or large-scale printing this document. Royalties and
donations are accepted and will encourage further editions.

ii

These are some of the typographical conventions used in this book.

Bold
italics

slanted

Typewriter

Key

Used to mark new concepts, WARNINGS, and keywords in a language.
Used for emphasis in text.

Used to mark meta-variables in the text, especially in representations of the
command line. For example, “ls -1 foo” where foo would “stand for” a filename,
such as /bin/cp.

Used to represent screen interaction.

Also used for code examples, whether it is “C” code, a shell script, or something
else, and to display general files, such as configuration files. When necessary for
clarity’s sake, these examples or figures will be enclosed in thin boxes.

Represents a key to press. You will often see it in this form: “Press to
continue.”

A diamond in the margin, like a black diamond on a ski hill, marks “danger” or
“caution.” Read paragraphs marked this way carefully.

This X in the margin indicates special instructions for users of the X Window
System.

This indicates a paragraph that contains special information that should be read
carefully.

Acknowledgments

The author would like to thank the following people for their invaluable help either with LINUX
itself, or in writing The LINUX Users’ Guide:
Linus Torvalds for providing something to write this manual about.

Karl Fogel has given me much help with writing my LINUX documentation and wrote most of
Chapter 8 and Chapter 9. I cannot give him enough credit.

Maurizio Codogno wrote much of Chapter 11.

David Channon wrote the appendix on vi. (Appendix A)

Yggdrasil Computing, Inc. for their generous (and voluntary) support of this manual.
Red Hat Software for their (more recent and still voluntary!) support.

The fortune program for supplying me with many of the wonderful quotes that start each chap-
ter. They cheer me up, if no one else.

iii

iv

Contents

1 Introduction 3
1.1 Who Should Read This Book 3
1.1.1 What You Should Have Done Before Reading This Book 3

1.2 How to Avoid Reading This Book 4
1.3 How to Read This Book 4
1.4 LINUX Documentation 5
1.4.1 Other LINUX Books i 5

1.42 HOWTOs o oo e e e e e e s e e 5

1.4.3 What’s the Linux Documentation Project? 6

1.5 Operating Systems L e e 6

2 What’s Unix, anyway? 9
2.1 Unix History 9
2.2 LINUX History e 10
221 LINUXNow e 11

2.2.2 A Few Questions and Answers 11

2.2.3 Commercial Software in LINUX 12

3 Getting Started 13
3.1 Power to the Computer e 13
3.2 LINUX Takes Over i i i it e e 14
3.3 The User Acts o o i i i e e e e e e 16
3.3.1 LoggingIn 16

3.3.2 Leaving the Computer 17

3.3.3 Turning the Computer Off 17

CONTENTS

3.4 Kernel Messages e 18
The Unix Shell 23
4.1 Unix Commands e 23
4.1.1 A Typical Unix Command 24
4.2 Helping Yourself e e 25
4.3 Storing Information 26
4.3.1 Looking at Directories with 1s 27
4.3.2 The Current Directoryand cd o 29
4.3.3 Creating and Removing Directories 30
4.4 Moving Information 31
441 cpLikeaMonk 32
442 Pruning Backwithrm L oo 33
4.4.3 A Forklift Can Be Very Handy 34
The X Window System 37
5.1 Starting and Stopping the X Window System 37
5.1.1 Starting X e e e e 37
51.2 Exiting X L L. e e 37
5.2 What is The X Window System? 38
5.3 What’s This on my Screen? 38
5.3.1 XClock e 39
5.3.2 XTerm oo e 40
5.4 Window Managers o i e e e e e 40
5.4.1 When New Windows are Created 40
5.4.2 Focusl 41
5.4.3 Moving Windows L 41
544 Depth o e 41
5.4.5 Iconization 42
5.4.6 Resizing 42
5.4.7 Maximization L. e e e 43
5.4.8 Menus e e 43

5.5 X Attributes e e e e 43

CONTENTS vii
5.5.1 Geometry e e 43

5.5.2 Display e 44

5.6 Common Features e 44
5.6.1 Buttons L 45

5.6.2 MenuBars e 45

5.6.3 Scroll Bars 46

6 Working with Unix 49
6.1 Wildcards e e 49
6.1.1 What Really Happens? i i 50

6.1.2 The Question Mark L 50

6.2 Time Saving withbash 51
6.2.1 Command-Line Editing 51

6.2.2 Command and File Completion 51

6.3 The Standard Input and The Standard Output 52
6.3.1 Unix Concepts o o i i i e e e e 52

6.3.2 Output Redirection 52

6.3.3 Input Redirection. e 53

6.3.4 The Pipe 53

6.4 Multitasking 54
6.4.1 Using Job Control e 54

6.4.2 The Theory of Job Control 58

6.5 Virtual Consoles: Being in Many Places at Once 60

7 Powerful Little Programs 61
7.1 The Power of Unix e 61
7.2 Operatingon Files L 62
7.3 System Statistics L e e e e e 63
74 What'sin the File? 65
7.5 Information Commands L 66

8 Editing files with Emacs 71
81 What’'s Emacs? e e 71
8.2 Getting Started Quickly in X L 73

viii CONTENTS
8.3 Editing Many Filesat Once 74
8.4 Ending an Editing Session 75
85 TheMeta Key e 75
8.6 Cutting, Pasting, Killing and Yanking 76
8.7 Searching and Replacing e 77
8.8 What’s Really Going On Here? 78
8.9 Asking Emacsfor Help 79
8.10 Specializing Buffers: Modes e 79
8.11 Programming Modes e e 80

811.1 CMode o o e e e 80
8.11.2 Scheme Mode 81
811.3 Mail Mode e 82
8.12 Being Even More Efficient 82
8.13 Customizing Emacs. L 83
8.14 Finding Out More e 87

9 I Gotta Be Me! 89

9.1 bash Customization e 89
9.1.1 Shell Startup L e 89
9.1.2 Startup Files L 90
9.1.3 Aliasing L 90
9.1.4 Environment Variables o oo 91

9.2 The X Window System Init Files, 97
9.2.1 Twm Configuration 99
9.2.2 Fvwm Configuration oo 104

9.3 OtherInit Files e 105
9.3.1 TheEmacsInit Fileo 105
9.3.2 FTP Defaults e 105
9.3.3 Allowing Easy Remote Access to Your Account 106
9.3.4 Mail Forwarding e 107

9.4 Seeing Some Examples e e 107

CONTENTS ix

10 Talking to Others 109
10.1 Electronic Mail e 109
10.1.1 Sending Mail L 109
10.1.2 Reading Mail 110

10.2 More than Enough News e 111
10.3 Searching for People L 111
10.3.1 The finger command 111
10.3.2 Plans and Projects o 112

10.4 Using Systems by Remote o 112
10.5 Exchanging Files e 113
10.6 Travelling the Web 114
11 Funny Commands 115
11.1 find, the file searcher 115
11.1.1 Generalities L e e 115
11.1.2 Expressions o v i i it e e e e e e e e 116
11.1.3 Options o v v i e e e e e e 116
1114 TeStS . o« o o o o i e e e e e e 117
11.1.5 Actions o o e 119
11.1.6 Operators o o o it e e e 119
11.1.7 Examples o oL e 120
11.1.8 Alast word o oo o e e e 121

11.2 tar, the tape archiver e 122
11.2.1 Introduction 122
11.2.2 Main options Ll 122
11.2.3 Modifiers e e 122
11.2.4 Examples e e e e e e e 122

11.3 dd, the data duplicator L 122
11.3.1 Options o o i o e e e e e e e 122
11.3.2 Examples oL e e 123

114 sort, the datasorter L e 124
11.4.1 Introduction e 124

11.4.2 Options v v i i e e e e e e e e 124

CONTENTS 1
11.4.3 Examples 124

12 Errors, Mistakes, Bugs, and Other Unpleasantries 125
12.1 Avoiding Errors e 125
12.2 What to do When Something Goes Wrong 126
123 Not Your Fault 126
12.3.1 WhenIs ThereaBug, 126

12.3.2 Reportinga Bug L 127

A Introduction to Vi 129
A1l A Quick History of Vi e 129
A2 Quick Ed Tutorial e 130
A21 Creatingafile 130

A22 editingaexistingfile Lo 131

A.23 Linenumbersindetail o oL 131

A3 Quick Vi Tutorial 133
A3.1 Invoking vil 133

A3.2 Cursor movement commands 133

A3.3 Deleting text o e e e e 134

A3.4 Filesaving e e e 134

A35 What’smext o o e e 134

A4 Advanced Vi Tutorial 134
A41 Movingaround e e 135

A42 Modifing Text o o e e e 136

A.4.3 Copying and Moving sections of text 138

A.4.4 Searching and replacing text oL 140

B The GNU General Public License 143
C The GNU Library General Public License 151

CONTENTS

Chapter 1

Introduction

How much does it cost to entice a dope-smoking Unix system guru to Dayton?
Brian Boyle, Unix World’s First Annual Salary Survey

1.1 Who Should Read This Book

Are you someone who should read this book? Let’s answer by asking some other questions: Have
you just gotten LINUX from somewhere, installed it, and want to know what to do next? Or are you
a non-Unix computer user who is considering LINUX but wants to find out what it can do for you?

If you have this book, the answer to these questions is probably “yes.” Anyone who has LINUX,
the free Unix clone written by Linus Torvalds, on their PC but doesn’t know what to do next should
read this book. In this book, we’ll cover most of the basic Unix commands, as well as some of the
more advanced ones. We’ll also talk about GNU Emacs, a powerful editor, and several other large
Unix applications.

1.1.1 What You Should Have Done Before Reading This Book

This book assumes that you have access to a Unix system. (It’s a bit hard to learn without getting
wet!) This Unix system is assumed to be an Intel PC running LiNUX. This requirement isn’t
necessary, but when versions of Unix differ, I'll be talking about how LINUX acts—nothing else.

LINUX is available in many forms, called distributions. It is hoped that you’ve found a complete
distribution such as the Slackware, Redhat, or the MCC-Interim versions and have installed it.
There are differences between the various distributions of LINUX, but for the most part they’re small
and unimportant. You may find differneces in the examples in this book. For the most part, these
should be fairly minor differences and are nothing to worry about. If there is a severe difference
between this book and your actual experience, please inform me, the author.

If you're the superuser (the maintainer, the installer) of the system, you also should have created
a normal user account for yourself. Please consult the installation manual(s) for this information.

3

4 CHAPTER 1. INTRODUCTION

If you aren’t the superuser, you should have obtained an account from the superuser.

You should have time and patience. Learning LINUX isn’t easy—most people find learning the
Macintosh Operating System is easier. Once you learn LINUX things get a lot easier. Unix is a very
powerful system and it is very easy to do some complex tasks.

In addition, this book assumes that you are moderately familiar with some computer terms.
Although this requirement isn’t necessary, it makes reading the book easier. You should know about
computer terms such as ‘program’ and ‘execution’. If you don’t, you might want to get someone’s
help with learning Unix.

1.2 How to Avoid Reading This Book

The best way to learn about almost any computer program is at your computer. Most people find
that reading a book without using the program isn’t beneficial. The best way to learn Unix and
LiNUX is by using them. Use LINUX for everything you can. Experiment. Don’t be afraid—it’s
possible to mess things up, but you can always reinstall. Keep backups and have fun!

Unix isn’t as intuitively obvious as some other operating systems. Thus, you will probably end
up reading at least Chapters 4, 5, and 6.

The number one way to avoid using this book is to use the on-line documentation that’s available.
Learn how to use the man command—it’s described in Section 4.2.

1.3 How to Read This Book

The suggested way of learning Unix is to read a little, then to play a little. Keep playing until you’re
comfortable with the concepts, and then start skipping around in the book. You’ll find a variety of
topics are covered, some of which you might find interesting and some of which you’ll find boring.
After a while, you should feel confident enough to start using commands without knowing exactly
what they should do. This is a good thing.

What most people regard as Unix is the Unix shell, a special program that interprets commands.
It is the program that controls the obvious “look and feel” of Unix. In practice, this is a fine way of
looking at things, but you should be aware that Unix really consists of many more things, or much
less. This book tells you about how to use the shell as well as some programs that Unix usually
comes with and some programs Unix doesn’t always come with (but LINUX usually does).

The current chapter is a meta-chapter—it discusses this book and how to apply this book to
getting work done. The other chapters contain:

Chapter 2 discusses where Unix and LINUX came from, and where they might be going. It also
talks about the Free Software Foundation and the GNU Project.

Chapter 3 talks about how to start and stop using your computer, and what happens at these
times. Much of it deals with topics not needed for using LINUX, but still quite useful and
interesting.

1.4. LINUX DOCUMENTATION)

Chapter 4 introduces the Unix shell. This is where people actually do work, and run programs.
It talks about the basic programs and commands you must know to use Unix.

Chapter 5 covers the X Window System. X is the primary graphical front-end to Unix, and some
distributions set it up by default.

Chapter 6 covers some of the more advanced parts of the Unix shell. Learning techniques described
in this chapter will help make you more efficent.

Chapter 7 has short descriptions of many different Unix commands. The more tools a user knows
how to use, the quicker he will get his work done.

Chapter 8 describes the Emacs text editor. Emacs is a very large program that integrates many
of Unix’s tools into one interface.

Chapter 9 talks about ways of customizing the Unix system to your personal tastes.

Chapter 10 investigates the ways a Unix user can talk to other machines around the world, in-
cluding electronic mail and the World Wide Web.

Chapter 11 describes some of the larger, harder to use commands.

Chapter 12 talks about easy ways to avoid errors in Unix and LINUX.

1.4 LiNUX Documentation

This book, The LINUX Users’ Guide, is intended for the Unix beginner. Luckily, the Linux Docu-
mentation Project is also writing books for the more experienced users.

1.4.1 Other Linux Books

The other books include Installation and Getting Started, a guide on how to aquire and install
LiNnuXx, The LINUX System Adminstrator’s Guide, how to organize and maintain a LINUX system,
and The LINUX Kernel Hackers’ Guide, a book about how to modify LINUX. The LINUX Network
Administration Guide talks about how to install, configure, and use a network connection.

1.4.2 HOWTOs

In additon to the books, the Linux Documentation Project has made a series of short documents
describing how to setup a particular aspect of LINUX. For instance, the SCSI-HOWTO describes some
of the complications of using SCSI—a standard way of talking to devices—with LINUX.

These HOWTOs are available in several forms: in a bound book such as The Linux Bible or
Dr. Linuz; in the newsgroup comp.os.linux.answers; or on various sites on the World Wide
Web. A central site for LINUX information is http://www.linux.org.

6 CHAPTER 1. INTRODUCTION

1.4.3 What’s the Linux Documentation Project?

Like almost everything associated with LINUX, the Linux Documentation Project is a collection
of people working across the globe. Originally organized by Lars Wirzenius, the Project is now
coordinated by Matt Welsh with help from Michael K. Johnson.

It is hoped that the Linux Documentation Project will supply books that will meet all the
needs of documenting LINUX at some point in time. Please tell us if we’ve suceeded or what we
should improve on. You can contact the author at leg+@andrew.cmu.edu and/or Matt Welsh at
mdw@cs.cornell.edu.

1.5 Operating Systems

An operating system’s primary purpose is to support programs that actually do the work you’re
interested in. For instance, you may be using an editor so you can create a document. This editor
could not do its work without help from the operating system—it needs this help for interacting
with your terminal, your files, and the rest of the computer.

If all the operating system does is support your applications, why do you need a whole book
just to talk about the operating system? There are lots of routine maintenance activities (apart
from your major programs) that you also need to do. In the case of LINUX, the operating system
also contains a lot of “mini-applications” to help you do your work more efficently. Knowing the
operating system can be helpful when you’re not working in one huge application.

Operating systems (frequently abbreviated as “OS”) can be simple and minimalist, like DOS,
or big and complex, like OS/2 or VMS. Unix tries to be a middle ground. While it supplies more
resources and does more than early operating systems, it doesn’t try to do everything. Unix was
originally designed as a simplification of an operating system named Multics.

The original design philosophy for Unix was to distribute functionality into small parts, the
programs.’ That way, you can easily achieve new functionality and new features by combining the
small parts (programs) in new ways. And if new utilities appear (and they do), you can integrate
them into your old toolbox. When I write this document, for example, I'm using these programs
actively; fvwm to manage my “windows”, emacs to edit the text, ATEX to format it, xdvi to preview
it, dvips to prepare it for printing and then lpr to print it. If there was a different dvi previewer
available, I could use that instead of xdvi without changing my other programs. At the current time,
my system is running thirty eight programs simultaneously. (Most of these are system programs
that “sleep” until they have some specific work to do.)

When you’re using an operating system, you want to minimize the amount of work you put into
getting your job done. Unix supplies many tools that can help you, but only if you know what these
tools do. Spending an hour trying to get something to work and then finally giving up isn’t very
productive. This book will teach you what tools to use in what situations, and how to tie these

IThis was actually determined by the hardware Unix original ran on. For some strange reason, the resulting
operating system was very useful on other hardware. The basic design is good enough to still be used twenty five
years later.

1.5. OPERATING SYSTEMS 7

various tools together.

The key part of an operating system is called the kernel. In many operating systems, like Unix,
0S/2, or VMS, the kernel supplies functions for running programs to use, and schedules them to be
run. It basically says program A can get so much time, program B can get this much time, and so
on. A kernel is always running: it is the first program to start when the system is turned on, and
the last program to do anything when the system is halted.

CHAPTER 1. INTRODUCTION

Chapter 2
What’s Unix, anyway?

Ken Thompson has an automobile which he helped design. Unlike most automobiles, it has
neither speedometer, nor gas gage, nor any of the numerous idiot lights which plague the
modern driver. Rather, if the driver makes any mistake, a giant “?” lights up in the center
of the dashboard. “The experienced driver,” he says, “will usually know what's wrong.”

2.1 Unix History

In 1965, Bell Telephone Laboratories (Bell Labs, a division of AT&T) was working with General
Electric and Project MAC of MIT to write an operating system called Multics. To make a long
story slightly shorter, Bell Labs decided the project wasn’t going anywhere and broke out of the
group. This left Bell Labs without a good operating system.

Ken Thompson and Dennis Ritchie decided to sketch out an operating system that would meet
Bell Labs’ needs. When Thompson needed a development environment (1970) to run on a PDP-7,
he implemented their ideas. As a pun on Multics, Brian Kernighan, another Bell Labs researcher,
gave the system the name Unix.

Later, Dennis Ritchie invented the “C” programming language. In 1973, Unix was rewritten in
C instead of the original assembly language.! In 1977, Unix was moved to a new machine through
a process called porting away from the PDP machines it had run on previously. This was aided by
the fact Unix was written in C since much of the code could simply be recompiled and didn’t have
to be rewritten.

In the late 1970’s, AT&T was forbidden from competing in the computing industry, so it licensed
Unix to various colleges and universities very cheaply. It was slow to catch on outside of academic
institutions but was eventually popular with businesses as well. The Unix of today is different
from the Unix of 1970. It has two major variations: System V, from Unix System Laboratories

1 «Assembly language” is a very basic computer language that is tied to a particular type of computer. It is usually
considered a challenge to program in.

10 CHAPTER 2. WHAT’S UNIX, ANYWAY?

(USL), a subsiderary of Novell?, and the Berkeley Software Distribution (BSD). The USL version
is now up to its forth release, or SVR43, while BSD’s latest version is 4.4. However, there are many
different versions of Unix besides these two. Most commercial versions of Unix derive from one of
the two groupings. The versions of Unix that are actually used usually incorporate features from
both variations.

Current commercial versions of Unix for Intel PCs cost between $500 and $2000.

2.2 LiNnux History

The primary author of LINUX is Linus Torvalds. Since his original versions, it has been improved by
countless numbers of people around the world. It is a clone, written entirely from scratch, of the Unix
operating system. Neither USL, nor the University of California, Berkeley, were involved in writing
LiNUX. One of the more interesting facts about LINUX is that development occurs simulataneously
around the world. People from Austrialia to Finland contributed to LINUXand will hopefully continue
to do so.

LINUX began with a project to explore the 386 chip. One of Linus’s earlier projects was a program
that would switch between printing AAAA and BBBB. This later evolved to LINUX.

LINUX has been copyrighted under the terms of the GNU General Public License (GPL). This
is a license written by the Free Software Foundation (FSF) that is designed to prevent people from
restricting the distribution of software. In brief, it says that although you can charge as much as
you’d like for a copy, you can’t prevent the person you sold it to from giving it away for free. It also
means that the source code* must also be available. This is useful for programmers. Anybody can
modify LINUX and even distributed his/her modifications, provided that they keep the code under
the same copyright.

LINUX supports most of popular Unix software, including the X Window System. The X Window
System was created at the Massachusetts Institute of Technology. It was written to allow Unix
systems to create graphical windows and easily interact with each other. Today, the X Window
System is used on every version of Unix available.

In addition to the two variations of Unix, System V and BSD, there is also a set of standardization
documents published by the IEEE entitled POSIX. LINUX is first and foremost compliant with the
POSIX-1 and POSIX-2 documents. Its look and feel is much like BSD in some places, and somewhat
like System V in others. It is a blend (and to most people, a good one) of all three standards.

Many of the utilities included with LINUX distributions are from the Free Software Foundation
and are part of GNU Project. The GNU Project is an effort to write a portable, advanced operating
system that will look a lot like Unix. “Portable” means that it will run on a variety of machines,
not just Intel PCs, Macintoshes, or whatever. The GNU Project’s operating system is called the
Hurd. The main difference between LINUX and GNU Hurd is not in the user interface but in the

2Tt was recently sold to Novell. Previously, USL was owned by AT&T.

3A cryptic way of saying “system five, release four”.

4The source code of a program is what the programmer reads and writes. It is later translated into unreadable
machine code that the computer interprets.

2.2. LINUX HISTORY 11

programmer’s interface—the Hurd is a modern operating system while LINUX borrows more from
the original Unix design.

The above history of LINUX is deficient in mentioning anybody besides Linux Torvalds. For
instance, H. J. Lu has maintained gcc and the LiNUX C Library (two items needed for all the
programs on LINUX) since very early in LiNnux’s life. You can find a list of people who deserve to
be recognized on every LINUX system in the file /usr/src/linux/CREDITS.

2.2.1 Linux Now

The first number in LINUX’s version number indicates truly huge revisions. These change very slowly
and as of this writing (February, 1996) only version “1” is available. The second number indicates
less major revisions. Even second numbers signify more stable, dependable versions of LINUXwhile
odd numbers are developing versions that are more prone to bugs. The final version number is the
minor release number—every time a new version is released that may just fix small problems or add
minor features, that number is increased by one. As of February, 1996, the latest stable version is
1.2.11 and the latest development version is 1.3.61.

LINUX is a large system and unfortunately contains bugs which are found and then fixed. Al-
though some people still experience bugs regularly, it is normally because of non-standard or faulty
hardware; bugs that effect everyone are now few and far between.

Of course, those are just the kernel bugs. Bugs can be present in almost every facet of the system,
and inexperienced users have trouble seperating different programs from each other. For instance,
a problem might arise that all the characters are some type of gibberish—is it a bug or a “feature”?
Surprisingly, this is a feature—the gibberish is caused by certain control sequences that somehow
appeared. Hopefully, this book will help you to tell the different situations apart.

2.2.2 A Few Questions and Answers

Before we embark on our long voyage, let’s get the ultra-important out of the way.
Question: Just how do you pronounce LINUX?

Answer: According to Linus, it should be pronounced with a short ih sound, like prInt, mIn-
Imal, etc. LINUX should rhyme with Minix, another Unix clone. It should not be pronounced like
(American pronounciation of) the “Peanuts” character, Linus, but rather LIH-nucks. And the u is
sharp as in rule, not soft as in ducks. LINUX should almost rhyme with “cynics”.

Question: Why work on LINUX?

Answer: Why not? LINUX is generally cheaper (or at least no more expensive) than other
operating systems and is frequently less problematic than many commercial systems. It might not
be the best system for your particular applications, but for someone who is interested in using Unix
applications available on LINUX, it is a high-performance system.

12 CHAPTER 2. WHAT’S UNIX, ANYWAY?

2.2.3 Commercial Software in LINUX

There is a lot of commercial software available for LINUX. Starting with Motif, a user interface for
the X Window System that vaguely resembles Microsoft Windows, LINUX has been gaining more
and more commercial software. These days you can buy anything from Word Perfect (a popular
word processor) to Maple, a complex symbolic manipulation package, for LINUX.

For any readers interested in the legalities of LINUX, this is allowed by the LINUX license. While
the GNU General Public License (reproduced in Appendix B) covers the LINUX kernel and would
seemingly bar commercial software, the GNU Library General Public License (reproduced in Ap-
pendix C) covers most of the computer code applications depend on. This allows commercial software
providers to sell their applications and withhold the source code.

Please note that those two documents are copyright notices, and not licenses to use. They do
not regulate how you may use the software, merely under what circumstances you can copy it and
any derivative works. To the Free Software Foundation, this is an important distinction: LINUX
doesn’t involve any “shrink-wrap” licenses but is merely protected by the same law that keeps you
from photocopying a book.

Chapter 3

Getting Started

This login session: $13.99, but for you $11.88.

You may have previous experience with MS-DOS or other single user operating systems, such
as 0S/2 or the Macintosh. In these operating systems, you didn’t have to identify yourself to the
computer before using it; it was assumed that you were the only user of the system and could access
everything. Well, Unix is a multi-user operating system—not only can more than one person use it
at a time, different people are treated differently.

To tell people apart, Unix needs a user to identify him or herself' by a process called logging in.
When you first turn on the computer a complex process takes place before the computer is ready
for someone to use it. Since this guide is geared towards LINUX, I'll tell you what happens during
the LINUX boot-up sequence.

If you’re using LINUX on some type of computer besides an Intel PC, some things in this chapter
won’t apply to you. Mostly, they’ll be in Section 3.1.

If you’re just interested in using your computer, you can skip all the information in the chapter
except for Section 3.3.

3.1 Power to the Computer

The first thing that happens when you turn an Intel PC on is that the BIOS executes. BIOS stands
for Basic Input/Output System. It’s a program permenantly stored in the computer on read-only
chips. It performs some minimal tests, and then looks for a floppy disk in the first disk drive. If it
finds one, it looks for a “boot sector” on that disk, and starts executing code from it, if any. If there
is a disk, but no boot sector, the BIOS will print a message like:

Non-system disk or disk error

1From here on in this book, I shall be using the masculine pronouns to identify all people. This is the standard
English convention, and people shouldn’t take it as a statement that only men can use computers.

13

14 CHAPTER 3. GETTING STARTED

Figure 3.1 The path an Intel PC takes to get to a shell prompt. init may or may not start the X
Window System. If it does, xdm runs. Otherwise, getty runs.
the kernel

LILO — Linux—> i nit

|
Y Y

BIOS | ogi n =——getty xdm

the X Window System

— bash <—‘

the shell

Removing the disk and pressing a key will cause the boot process to continue.

If there isn’t a floppy disk in the drive, the BIOS looks for a master boot record (MBR) on
the hard disk. It will start executing the code found there, which loads the operating system. On
LiNUX systems, LILO, the LInux LOader, can occupy the MBR position, and will load LINUX. For
now, we’ll assume that happens and that LINUX starts to load. (Your particular distribution may
handle booting from the hard disk differently. Check with the documentation included with the
distribution. Another good reference is the LILO documentation, [1].)

3.2 Linux Takes Over

After the BIOS passes control to LILO, LILO passes control to the LINUX kernel. A kernel is the
central program of the operating system, in control of all other programs. The first thing that LINUX
does once it starts executing is to change to protected mode. The 803862 CPU that controls your
computer has two modes called “real mode” and “protected mode”. DOS runs in real mode, as does
the BIOS. However, for more advanced operating systems, it is necessary to run in protected mode.
Therefore, when LINUX boots, it discardes the BIOS.

Other CPUs will get to this stage differently. No other CPU needs to switch into protected mode
and few have to have such a heavy framework around the loading procedure as LILO and the BIOS.
Once the kernel starts up, LINUX works much the same.

LiNUX then looks at the type of hardware it’s running on. It wants to know what type of hard
disks you have, whether or not you have a bus mouse, whether or not you’re on a network, and other
bits of trivia like that. LINUX can’t remember things between boots, so it has to ask these questions
each time it starts up. Luckily, it isn’t asking you these questions—it is asking the hardware!

2When I refer to the 80386, I am also talking about the 80486, Pentium, and Pentium Pro computers unless I
specifically say so. Also, I’ll be abbreviating 80386 as 386.

3.2. LINUX TAKES OVER 15

During boot-up, the LINUX kernel will print variations on several messages. You can read about the
messages in Section 3.4. This query process can some cause problems with your system but if it was
going to, it probably would have when you first installed LINUX. If you're having problems, consult
your distribution’s documentation.

The kernel merely manages other programs, so once it is satisfied everything is okay, it must
start another program to do anything useful. The program the kernel starts is called init . (Notice
the difference in font. Things in this font are usually the names of programs, files, directories, or
other computer related items.) After the kernel starts init, it never starts another program. The
kernel becomes a manager and a provider, not an active program.

So to see what the computer is doing after the kernel boots up, we’ll have to examine init. init
goes through a complicated startup sequence that isn’t the same for all computers. LINUX has many
different versions of init, and each does things its own way. It also matters whether your computer
is on a network and what distribution you used to install LINUX. Some things that might happen
once init is started:

e The file systems might be checked. What is a file system? A file system is the layout of files on
the hard disk. It let’s LINUX know which parts of the disk are already used, and which aren’t.
(It’s like an index to a rather large filing system or a card catalog to a library.) Unfortunately,
due to various factors such as power losses, what the file system information thinks is going
on in the rest of the disk and the actually layout of the rest of the disk are occasionally in
conflict. A special program, called fsck, can find these situations and hopefully correct them.

e Special routing programs for networks are run. These programs tell your computer how it’s
suppose to contact other computers.

e Temporary files left by some programs may be deleted.

e The system clock can be correctly updated. This is trickier then one might think, since Unix,
by default, wants the time in UCT (Universal Coordinated Time, also known as Greenwich
Mean Time) and your CMOS clock, a battery powered clock in your computer, is probably set
on local time. This means that some program must read the time from your hardware clock
and correct it to UCT.

After init is finished with its duties at boot-up, it goes on to its regularly scheduled activities.
init can be called the parent of all processes on a Unix system. A process is simply a running
program. Since one program can be running two or more times, there can be two or more processes
for any particular program.

In Unix, a process, an instance of a program, is created by a system call—a service provided by
the kernel—called fork. (It’s called “fork” since one process splits off into two seperate ones.) init
forks a couple of processes, which in turn fork some of their own. On your LINUX system, what init
runs are several instances of a program called getty. getty is the program that will allow a user to
login and eventually calls a program called login.

16 CHAPTER 3. GETTING STARTED

3.3 The User Acts

3.3.1 Logging In

The first thing you have to do to use a Unix machine is to identify yourself. The login is Unix’s way
of knowing that users are authorized to use the system. It asks for an account name and password.
An account name is normally similar to your regular name; you should have already received one
from your system administrator, or created your own if you are the system administrator. (Infor-
mation on doing this should be available in Installation and Getting Started or The LINUX System
Adminstrator’s Guide.)

You should see, after all the boot-up procedures are done, something like the following (the first
line is merely a greeting message—it might be a disclaimer or anything else):

Welcome to the mousehouse. Please, have some cheese.

mousehouse login:

However, it’s possible that what the system presents you with does not look like this. Instead of
a boring text mode screen, it is graphical. However, it will still ask you to login, and will function
mostly the same way. If this is the case on your system, you are going to be using The X Window
System. This means that you will be presented with a windowing system. Chapter 5 will discuss
some of the differences that you’ll be facing. Logging in will be similar as will the basics to much of
Unix. If you are using X, look for a giant X is the margin.

This is, of course, your invitation to login. Throughout this manual, we’ll be using the fictional
(or not so fictional, depending on your machine) user larry. Whenever you see larry, you should
be substituting your own account name. Account names are usually based on real names; bigger,
more serious Unix systems will have accounts using the user’s last name, or some combination of
first and last name, or even some numbers. Possible accounts for Larry Greenfield might be: larry,
greenfie, lgreenfi, 1g19.

mousehouse is, by the way, the “name” of the machine I'm working on. It is possible that when
you installed LINUX, you were prompted for some very witty name. It isn’t very important, but
whenever it comes up, I'll be using mousehouse or, rarely, lionsden when I need to use a second
system for clarity or contrast.

After entering larry and pressing , I’'m faced with the following;:

mousehouse login: larry

Password:

What LINUX is asking for is your password. When you type in your password, you won’t be
able to see what you type. Type carefully: it is possible to delete, but you won’t be able to see
what you are editing. Don’t type too slowly if people are watching—they’ll be able to learn your
password. If you mistype, you’ll be presented with another chance to login.

If you’ve typed your login name and password correctly, a short message will appear, called
the message of the day. This could say anything—the system adminstrator decides what it should

3.3. THE USER ACTS 17

be. After that, a prompt appears. A prompt is just that, something prompting you for the next
command to give the system. It should look something like this:

/home/larry#

If you’ve already determined you’re using X, you’ll probably see a prompt like the one above
in a “window” somewhere on the screen. (A “window” is a rectangular box.) To type into the
prompt, move the mouse cursor (it probably looks like a big “x” or an arrow) using the mouse into

the window.

3.3.2 Leaving the Computer

Do not just turn off the computer! You risk losing valuable data!

Unlike most versions of DOS, it’s a bad thing to just hit the power switch when you’re done
using the computer. It is also bad to reboot the machine (with the reset button) without first taking
proper precautions. LINUX, in order to improve performance, has a disk cache. This means it
temporarily stores part of the computer’s permanent storage in RAM.? The idea of what LINUX
thinks the disk should be and what the disk actually contains is syncronized every 30 seconds. In
order to turn off or reboot the computer, you’ll have to go through a procedure telling it to stop
caching disk information.

If you’re done with the computer, but are logged in (you’ve entered a username and password),
first you must logout. To do so, enter the command logout. All commands are sent by pressing
. Until you hit return nothing will happen and you can delete what you’ve done and start
over.

/home/larry# logout
Welcome to the mousehouse. Please, have some cheese.
mousehouse login:

Now another user can login.

3.3.3 Turning the Computer Off

If this is a single user system, you might want to turn the computer off when you’re done with it.*
To do so, you’ll have to log into a special account called root. The root account is the system
adminstrator’s account and can access any file on the system. If you’re going to turn the computer

3The difference between “RAM” and a hard disk is like the difference between short term memory and long term
memory. Shutting off the power is like giving the computer a knock on the head—it’ll forget everything in short term
memory. But things saved in long term memory, the hard disk, will be okay. The disk is thousands of times slower
than RAM.

4To avoid possibly weakening some hardware components, only turn off the computer when you’re done for the
day. Turning the computer on and off once a day is probably the best compromise between energy and wear & tear
on the system.

18 CHAPTER 3. GETTING STARTED

off, get the password from the system adminstrator. (In a single user system, that’s you! Make sure
you know the root password.) Login as root:

mousehouse login: root

Password:

Linux version 1.3.55 (root@mousehouse) #1 Sun Jan 7 14:56:26 EST 1996
/# shutdown now

Why? end of the day

URGENT: message from the sysadmin:
System going down NOW

. end of the day ...
Now you can turn off the power...

The command shutdown now prepares the system to be reset or turned off. Wait for a message
saying it is safe to and then reset or turn off the system. (When the system asks you “Why?”, it
is merely asking for a reason to tell other users. Since no one is using the system when you shut it
down, you can tell it anything you want or nothing at all.)

A quick message to the lazy: an alternative to the logout/login approach is to use the command
su. As a normal user, from your prompt, type su and press . It should prompt you for
the root password, and then give you root privileges. Now you can shutdown the system with the
shutdown now command.

3.4 Kernel Messages

When you first start your computer, a series of messages flash across the screen describing the
hardware that is attached to your computer. These messages are printed by the LINUX kernel. In
this section, I’ll attempt to describe and explain those messages.

Naturally, these messages differ from machine to machine. T’ll describe the messages I get for
my machine. The following example contains all of the standard messages and some specific ones.
(In general, the machine I'm taking this from is a minimally configured one: you won’t see a lot of
device specific configuration.) This was made with Linux version 1.3.55—one of the most recent as
of this writing.

1. The first thing LINUX does is decides what type of video card and screen you have, so it can
pick a good font size. (The smaller the font, the more that can fit on the screen on any one
time.) LINUX may ask you if you want a special font, or it might have had a choice compiled

in.?

Console: 16 point font, 400 scans

Console: colour VGA+ 80x25, 1 virtual console (max 63)

5«Compiled” is the process by which a computer program that a human writes gets translated into something the
computer understands. A feature that has been “compiled in” has been included in the program.

3.4. KERNEL MESSAGES 19

In this example, the machine owner decided he wanted the standard, large font at compile time.
Also, note the misspelling of the word “color.” Linus evidently learned the wrong version of
English.

2. The next thing the kernel will report is how fast your system is, as measured by “BogoMIPS”.
A “MIP” stands for a million instructions per second, and a “BogoMIP” is a “bogus MIP”: how
many times the computer can do absolutely nothing in one second. (Since this loop doesn’t
actually do anything, the number is not actually a measure of how fast the system is.) LINUX
uses this number when it needs to wait for a hardware device.

Calibrating delay loop.. ok - 33.28 BogoMIPS
3. The LiNUX kernel also tells you a little about memory usage:
Memory: 23180k/24576k available (544k kernel code, 384k reserved, 468k data)

This said that the machine had 24 megabytes of memory. Some of this memory was reserved
for the kernel. The rest of it can be used by programs. This is the temporary RAM that is
used only for short term storage. Your computer also has a permanent memory called a hard
disk. The hard disk’s contents stay around even when power is turned off.

4. Throughout the bootup procedure, LINUX tests different parts of the hardware and prints
messages about these tests.

This processor honours the WP bit even when in supervisor mode. Good.

5. Now LINUX moves onto the network configuration. The following should be described in The
LiNUX Networking Guide, and is beyond the scope of this document.

Swansea University Computer Society NET3.033 for Linux 1.3.50
IP Protocols: ICMP, UDP, TCP

6. LiNnUX supports a FPU, a floating point unit. This is a special chip (or part of a chip, in the
case of a 80486DX CPU) that performs arithmetic dealing with non-whole numbers. Some of
these chips are bad, and when LINUX tries to identify these chips, the machine “crashes”. The
machine stops functioning. If this happens, you’ll see:

Checking 386/387 coupling...
Otherwise, you’ll see:
Checking 386/387 coupling... Ok, fpu using exception 16 error reporting.
if you’re using a 486DX. If you are using a 386 with a 387, you’ll see:
Checking 386/387 coupling... 0k, fpu using irql3 error reporting.
7. It now runs another test on the “halt” instruction.
Checking ’hlt’ instruction... Ok.

8. After that initial configuration, LINUX prints a line identifying itself. It says what version it
is, what version of the GNU C Compiler compiled it, and when it was compiled.

Linux version 1.3.55 (root@mousehouse) (gcc version 2.7.0) #1 Sun Jan 7 14:56:26 EST 1996

20

CHAPTER 3. GETTING STARTED

9.

10.

11.

12.

13.

14.

The serial driver has started to ask questions about the hardware. A driver is a part of the
kernel that controls a device, usually a peripheral. It is responsible for the details of how
the CPU communicates with the device. This allows people who write user applications to
concentrate on the application: they don’t have to worry about exactly how the computer
works.

Serial driver version 4.11 with no serial options enabled
tty00 at 0x03f8 (irq = 4) is a 16450
tty01l at 0x02f8 (irq = 3) is a 16450
tty02 at 0x03e8 (irq = 4) is a 16450

Here, it found 3 serial ports. A serial port is the equivalent of a DOS COM port, and is a device
normally used to communicate with modems and mice.

What it is trying to say is that serial port 0 (COM1) has an address of 0x03f8. When it
interrupts the kernel, usually to say that it has data, it uses IRQ 4. An IRQ is another means
of a peripheral talking to the software. Each serial port also has a controller chip. The usual
one for a port to have is a 16450; other values possible are 8250 and 16550.

Next comes the parallel port driver. A parallel port is normally connected to a printer, and
the names for the parallel ports (in LINUX) start with 1p. 1p stands for Line Printer, although
in modern times it makes more sense for it to stand for Laser Printer. (However, LINUX will
happily communicate with any sort of parallel printer: dot matrix, ink jet, or laser.)

1p0 at 0x03bc, (polling)
That message says it has found one parallel port, and is using the standard driver for it.

LINUX next identifies your hard disk drives. In the example system I’m showing you, mousehouse,
I’ve installed two IDE hard disk drives.

hda: WDC AC2340, 325MB w/127KB Cache, CHS=1010/12/55
hdb: WDC AC2850F, 814MB w/64KB Cache, LBA, CHS=827/32/63

The kernel now moves onto looking at your floppy drives. In this example, the machine has
two drives: drive “A” is a 5 1/4 inch drive, and drive “B” is a 3 1/2 inch drive. LINUX calls
drive “A” £d40 and drive “B” fd1i.

Floppy drive(s): £d0 is 1.44M, fdl is 1.2M
floppy: FDC O is a National Semiconductor PC87306

The next driver to start on my example system is the SLIP driver. It prints out a message
about its configuration.

SLIP: version 0.8.3-NET3.019-NEWTTY (dynamic channels, max=256) (6 bit encapsulation enabled)

CSLIP: code copyright 1989 Regents of the University of California

The kernel also scans the hard disks it found. It will look for the different partitions on each
of them. A partition is a logical separation on a drive that is used to keep operating systems
from interfering with each other. In this example, the computer had two hard disks (hda, hdb)
with four partitions and one partition, respectively.

3.4. KERNEL MESSAGES 21

Partition check:
hda: hdal hda2 hda3 hdad
hdb: hdbil

15. Finally, LINUX mounts the root partition. The root partition is the disk partition where

the LINUX operating system resides. When LINUX “mounts” this partition, it is making the
partition available for use by the user.

VFS: Mounted root (ext2 filesystem) readonly.

22

CHAPTER 3. GETTING STARTED

Chapter 4

The Unix Shell

Making files is easy under the UNIX operating system. Therefore, users tend to create

numerous files using large amounts of file space. It has been said that the only standard

thing about all UNIX systems is the message-of-the-day telling users to clean up their files.
System V.2 administrator’s guide

4.1 Unix Commands

When you first log into a Unix system, you are presented with something that looks like the following;:
/home/larry#

That “something” is called a prompt. As its name would suggest, it is prompting you to enter
a command. Every Unix command is a sequence of letters, numbers, and characters. There are no
spaces, however. Some valid Unix commands are mail, cat, and CMU_is _Number-5. Some characters
aren’t allowed—we’ll go into that later. Unix is also case-sensitive. This means that cat and Cat
are different commands.!

The prompt is displayed by a special program called the shell. Shells accept commands, and
run those commands. They can also be programmed in their own language, and programs written
in that language are called “shell scripts”.

There are two major types of shells in Unix: Bourne shells and C shells. Bourne shells are named
after their inventor, Steven Bourne. Steven Bourne wrote the original Unix shell sh, and most shells
since then end in the letters sh to indicate they are extentions on the original idea. There are many
implementations of his shell, and all those specific shell programs are called Bourne shells. Another
class of shells, C shells (originally implemented by Bill Joy), are also common. Traditionally, Bourne
shells have been used for shell scripts and compatibility with the original sh while C shells have been

1Case sensitivity is a very personal thing. Some operating systems, such as 0S/2 or Windows NT are case
preserving, but not case sensitive. In practice, Unix rarely uses the different cases. It is unusual to have a situation
where cat and Cat are different commands.

23

24 CHAPTER 4. THE UNIX SHELL

used for interactive use. (C shells have had the advantages of having better interactive features but
somewhat harder programming features.)

LINUX comes with a Bourne shell called bash, written by the Free Software Foundation. bash
stands for Bourne Again Shell, one of the many bad puns in Unix. It is an “advanced” Bourne
shell: it contains the standard programming features found in all Bourne shells with many interactive
features commonly found in C shells. bash is the default shell to use running LINUX.

When you first login, the prompt is displayed by bash, and you are running your first Unix
program, the bash shell. As long as you are logged in, the bash shell will constantly be running.

4.1.1 A Typical Unix Command
The first command to know is cat. To use it, type cat, and then :

/home/larry# cat

If you now have a cursor on a line by itself, you’ve done the correct thing. There are several
variances you could have typed—some would work, some wouldn’t.

e If you misspelled cat, you would have seen

/home/larry# ct
ct: command not found
/home/larry#

Thus, the shell informs you that it couldn’t find a program named “ct” and gives you another
prompt to work with. Remember, Unix is case sensitive: CAT is a misspelling.

e You could have also placed whitespace before the command, like this:?
/home/larry#, ,, uucat
This produces the correct result and runs the cat program.

¢ You might also press return on a line by itself. Go right ahead—it does absolutely nothing.

I assume you are now in cat. Hopefully, you're wondering what it is doing. No, it is not a game.
cat is a useful utility that won’t seem useful at first. Type anything and hit return. What you
should have seen is:

/home/larry# cat
Help! I’'m stuck in a Linux program!

Help! I’m stuck in a Linux program!

2The ‘.’ indicates that the user typed a space.

4.2. HELPING YOURSELF 25

(The slanted text indicates what I typed to cat.) What cat seems to do is echo the text right
back at yourself. This is useful at times, but isn’t right now. So let’s get out of this program and
move onto commands that have more obvious benefits.

To end many Unix commands, type |Ctr|—d |3. |Ctrl—d| is the end-of-file character, or EOF for

short. Alternatively, it stands for end-of-text, depending on what book you read. I'll refer to it as
an end-of-file. It is a control character that tells Unix programs that you (or another program) is
done entering data. When cat sees you aren’t typing anything else, it terminates.

For a similar idea, try the program sort. As its name indicates, it is a sorting program. If
you type a couple of lines, then press , it will output those lines in a sorted order. These
types of programs are called filters, because they take in text, filter it, and output the text slightly
differently. Both cat and sort are unusual filters. cat is unusual because it reads in text and
performs no changes on it. sort is unusual because it reads in lines and doesn’t output anything
until after it’s seen the EOF character. Many filters run on a line-by-line basis: they will read in a
line, perform some computations, and output a different line.

4.2 Helping Yourself

The man command displays reference pages for the command* you specify. For example:

/home/larry# man cat
cat (1) cat (1)

NAME

cat - Concatenates or displays files

SYNOPSIS
cat [-benstuvAET] [--number] [--number-nonblank] [--squeeze-blank]
[--show-nonprinting] [--show-ends] [--show-tabs] [--show-all]
[--help] [--version] [file...]

DESCRIPTION

This manual page documents the GNU version of cat ...

There’s about one full page of information about cat. Try running man now. Don’t expect to
understand the manpage given. Manpages usually assume quite a bit of Unix knowledge—knowledge
that you might not have yet. When you’ve read the page, there’s probably a little black block at the

[43 ”

bottom of your screen similar to “~-more--" or “Line 1”. This is the more-prompt, and you’ll
learn to love it.

3Hold down the key labeled “Ctrl” and press “d”, then let go of both.

4man will also display information on a system call, a subroutine, a file format, and more. In the original version
of Unix it showed the exact same information the printed documentation would. For now, you're probably only
interested in getting help on commands.

26 CHAPTER 4. THE UNIX SHELL

Instead of just letting the text scroll away, man stops at the end of each page, waiting for you
to decide what to do now. If you just want to go on, press and you’ll advance a page. If
you want to exit (quit) the manual page you are reading, just press E You’ll be back at the shell
prompt, and it’'ll be waiting for you to enter a new command.

There’s also a keyword function in man. For example, say you’re interested in any commands
that deal with Postscript, the printer control language from Adobe. Type man -k ps or man -k
Postscript, you'll get a listing of all commands, system calls, and other documented parts of Unix
that have the word “ps” (or “Postscript”) in their name or short description. This can be very useful
when you’re looking for a tool to do something, but you don’t know it’s name—or if it even exists!

4.3 Storing Information

Filters are very useful once you are an experienced user, but they have one small problem. How do
you store the information? Surely you aren’t expected to type everything in each time you are going
to use the program! Of course not. Unix provides files and directories.

A directory is like a folder: it contains pieces of paper, or files. A large folder can even hold
other folders—directories can be inside directories. In Unix, the collection of directories and files is

[4

called the file system. Initially, the file system consists of one directory, called the “root” directory.

Inside this directory, there are more directories, and inside those directories are files and yet more

directories.?

Each file and each directory has a name. It has both a short name, which can be the same as
another file or directory somewhere else on the system, and a long name which is unique. A short
name for a file could be joe, while it’s “full name” would be /home/larry/joe. The full name is
usually called the path. The path can be decode into a sequence of directories. For example, here
is how /home/larry/joe is read:

/home/larry/joe
The initial slash indicates the root directory.
This signifies the directory called home. It is inside the root directory.
This is the directory larry, which is inside home.
joe is inside larry. A path could refer to either a directory or a filename,
so joe could be either. All the items before the short name must be directories.

An easy way of visualizing this is a tree diagram. To see a diagram of a typical LINUX system,
look at Figure 4.1. Please note that this diagram isn’t complete—a full LINUX system has over 8000
filesl—and shows only some of the standard directories. Thus, there may be some directories in
that diagram that aren’t on your system, and your system almost certainly has directories not listed
there.

5There may or may not be a limit to how “deep” the file system can go. (I’ve never reached it—one can easily
have directories 10 levels deep.)

4.3. STORING INFORMATION 27

Figure 4.1 A typical (abridged) Unix directory tree.

/——bin
—dev
—etc
—home larr
T samy
—lib
L proc
—tmp
—usr — 71— X11R6
— bin
—emacs
—etc
— g++-include
—include
—lib
—local bin
emacs
etc
lib
—man
— spool
—Src linux
—tmp

4.3.1 Looking at Directories with 1s

Now that you know that files and directories exist, there must be some way of manipulating them.
Indeed there is. The command 1s is one of the more important ones. It lists files. If you try 1s as
a command, you’ll see:

/home/larry# 1s
/home/larry#

That’s right, you’ll see nothing. Unix is intensionally terse: it gives you nothing, not even “no
files” if there aren’t any files. Thus, the lack of output was 1s’s way of saying it didn’t find any files.

But I just said there could be 8000 or more files lying around: where are they? You’ve run into
the concept of a “current” directory. You can see in your prompt that your current directory is
/home/larry, where you don’t have any files. If you want a list of files of a more active directory,
try the root directory:

28 CHAPTER 4. THE UNIX SHELL

/home/larry# 1ls /

bin etc install mnt root user var
dev home lib proc tmp usr vmlinux
/home/larry#

In the above command, “ls /”, the directory (“/”) is a parameter. The first word of the
command is the command name, and anything after it is a parameter. Parameters generally modify
what the program is acting on—for 1s, the parameters say what directory you want a list for. Some
commands have special parameters called options or switches. To see this try:

/home/larry# 1s -F /

bin/ etc/ install/ mnt/ root/ user/ var@
dev/ home/ 1ib/ proc/ tmp/ usr/ vmlinux
/home/larry#

The -F is an option. An option is a special kind of parameter that starts with a dash and
modifies how the program runs, but not what the program runs on. For 1s, -F is an option that
lets you see which ones are directories, which ones are special files, which are programs, and which
are normal files. Anything with a slash is a directory. We’ll talk more about 1s’s features later. It’s
a surprisingly complex program!

Now, there are two lessons to be learned here. First, you should learn what 1s does. Try a few
other directories that are shown in Figure 4.1, and see what they contain. Naturally, some will be
empty, and some will have many, many files in them. I suggest you try 1s both with and without
the -F option. For example, 1s /usr/local looks like:

/home/larry# 1ls /usr/local
archives bin emacs etc ka9q lib tcl

/home/larry#

The second lesson is more general. Many Unix commands are like 1s. They have options, which
are generally one character after a dash, and they have parameters. Unlike 1s, some commands
require certain parameters and/or options. To show what commands generally look like, we’ll use
the following form:

1s [-aRF] [directory]

T’ll generally use command templates like that before I introduce any command from now on.
The first word is the command (in this case 1s). Following the command are all the parameters.
Optional parameters are contained in brackets (“[” and “|”). Meta-variables are slanted—they’re
words that take the place of actual parameters. (For example, above you see directory, which should
be replaced by the name of a real directory.)

Options are a special case. They’re enclosed by brackets, but you can take any one of them
without using all of them. For instance, with just the three options given for 1s you have eight
different ways of running the command: with or without each of the options. (Contrast 1s -R with
1s -F.)

4.3. STORING INFORMATION 29

4.3.2 The Current Directory and cd

pwd

Using directories would be cumbersome if you had to type the full path each time you wanted
to access a directory. Instead, Unix shells have a feature called the “current” or “present” or
“working” directory. Your setup most likely displays your directory in your prompt: /home/larry.
If it doesn’t, try the command pwd, for present working directory. (Sometimes the prompt will
display the machine name. This is only really useful in a networked environment with lots of
different machines.)

mousehouse>pwd
/home/larry
mousehouse>

cd [directory]

As you can see, pwd tells you your current directory®—a very simple command. Most commands
act, by default, on the current directory. For instance, 1s without any parameters displays the
contents of the current directory. We can change our current directory using cd. For instance, try:

/home/larry# cd /home

/home# 1ls -F

larry/ sam/ shutdown/ steve/ userl/
/homett

If you omit the optional parameter directory, you'’re returned to your home, or original, directory.
Otherwise, cd will change you to the specified directory. For instance:

/home# cd
/home/larry# cd /
/# cd home

/home#t cd /usr
/usr# cd local/bin
/usr/local/bin#

As you can see, cd allows you to give either absolute or relative pathnames. An absolute path
starts with / and specifies all the directories before the one you wanted. A relative path is in
relation to your current directory. In the above example, when I was in /usr, I made a relative
move to local/bin—1local is a directory under usr, and bin is a directory under local! (cd home
was also a relative directory change.)

8You’ll see all the terms in this book: present working directory, current directory, or working directory. I prefer
“current directory”, although at times the other forms will be used for stylistic purposes.

30 CHAPTER 4. THE UNIX SHELL

“w o 7 W o

There are two directories used only for relative pathnames: and “..”. . The directory

” is the parent directory. These are “shortcut” directories.

refers to the current directory and “..
They exist in every directory, but don’t really fit the “folder in a folder” concept. Even the root

directory has a parent directory—it’s its own parent!

The file ./chapter-1 would be the file called chapter-1 in the current directory. Occasion-
ally, you need to put the “./” for some commands to work, although this is rare. In most cases,
./chapter-1 and chapter-1 will be identical.

”

The directory “..” is most useful in “backing up”:

/usr/local/bin# cd ..
/usr/local# 1ls -F

archives/ bin/ emacs@ etc/ ka9q/ 1lib/ tcl@
/usr/local# 1s -F ../src

cweb/ linux/ xmris/

/usr/local#

In this example, I changed to the parent directory using cd .., and I listed the directory
/usr/src from /usr/local using . ./src. Note that if I was in /home/larry, typing 1s -F ../src
wouldn’t do me any good!

The directory ~/ is an alias for your home directory:

/usr/local# 1s -F ~/
/usr/local#

You can see at a glance that there isn’t anything in your home directory! ~/ will become more
useful as we learn more about how to manipulate files.

4.3.3 Creating and Removing Directories

mkdir directoryl [directory2 ... directoryN|

Creating your own directories is extremely simple under Unix, and can be a useful organizational
tool. To create a new directory, use the command mkdir. Of course, mkdir stands for make
directory.

Let’s do a small example to see how this works:

/home/larry# 1ls -F
/home/larry# mkdir report-1993
/home/larry# 1ls -F
report-1993/

/home/larry# cd report-1993
/home/larry/report-1993#

4.4. MOVING INFORMATION 31

mkdir can take more than one parameter, interpreting each parameter as another directory to
create. You can specify either the full pathname or a relative pathname; report-1993 in the above
example is a relative pathname.

/home/larry/report-1993# mkdir /home/larry/report-1993/chapl ~/report-1993/chap2
/home/larry/report-1993# 1ls -F

chapl/ chap2/

/home/larry/report-1993#

rmdir directoryl [directory?2 ... directoryN|

The opposite of mkdir is rmdir (remove directory). rmdir works exactly like mkdir.

An example of rmdir is:

/home/larry/report-1993# rmdir chapl chap3
rmdir: chap3: No such file or directory
/home/larry/report-1993# 1ls -F

chap2/

/home/larry/report-1993# cd ..
/home/larry# rmdir report-1993

rmdir: report-1993: Directory not empty
/home/larry#

As you can see, rmdir will refuse to remove a non-existant directory, as well as a directory that
has anything in it. (Remember, report-1993 has a subdirectory, chap2, in it!) There is one more
interesting thing to think about rmdir: what happens if you try to remove your current directory?
Let’s find out:

/home/larry# cd report-1993
/home/larry/report-1993# 1ls -F
chap2/

/home/larry/report-1993# rmdir chap2
/home/larry/report-1993# rmdir .
rmdir: .: Operation not permitted
/home/larry/report-1993#

Another situation you might want to consider is what happens if you try to remove the parent of
your current directory. This turns out not to be a problem since the parent of your current directory
isn’t empty, so it can’t be removed!

4.4 Moving Information

All of these fancy directories are very nice, but they really don’t help unless you have some place to
store you data. The Unix Gods saw this problem, and they fixed it by giving the users files.

32 CHAPTER 4. THE UNIX SHELL

We will learn more about creating and editing files in the next few chapters.

The primary commands for manipulating files under Unix are cp, mv, and rm. They stand for
copy, move, and remove, respectively.

4.4.1 cp Like a Monk

cp [-i] source destination
cp [-] filel file2 ... fileN destination-directory”

cp is a very useful utility under Unix, and extremely powerful. It enables one person to copy
more information in a second than a fourteenth century monk could do in a year.

Be careful with cp if you don’t have a lot of disk space. No one wants to see a “Disk full” message
when working on important files. cp can also overwrite existing files without warning—TI’ll talk more
about that danger later.

We'll first talk about the first line in the command template. The first parameter to cp is the file
to copy—the second is where to copy it. You can copy to either a different filename, or a different
directory. Let’s try some examples:

/home/larry# 1ls -F /etc/passwd
/etc/passwd

/home/larry# cp /etc/passwd .
/home/larry# 1ls -F

passwd

/home/larry# cp passwd frog
/home/larry# 1ls -F

frog passwd

/home/larry#

The first cp command I ran took the file /etc/passwd, which contains the names of all the
users on the Unix system and their (encrypted) passwords, and copied it to my home directory. cp
doesn’t delete the source file, so I didn’t do anything that could harm the system. So two copies of
/etc/passwd exist on my system now, both named passwd, but one is in the directory /etc and
one is in /home/larry.

Then I created a third copy of /etc/passwd when I typed cp passwd frog—the three copies
are now: /etc/passwd, /home/larry/passwd and /home/larry/frog. The contents of these three
files are the same, even if the names aren’t.

cp can copy files between directories if the first parameter is a file and the second parameter is
a directory. In this case, the short name of the file stays the same.

7cp has two lines in its template because the meaning of the second parameter can be different depending on the
number of parameters.

4.4. MOVING INFORMATION 33

It can copy a file and change it’s name if both parameters are file names. Here is one danger of
cp. If I typed cp /etc/passwd /etc/group, cp would normally create a new file with the contents
identical to passwd and name it group. However, if /etc/group already existed, cp would destroy
the old file without giving you a chance to save it! (It won’t even print out a message reminding
you that you’re destroying a file by copying over it.)

Let’s look at another example of cp:

/home/larry# 1ls -F

frog passwd

/home/larry# mkdir passwd_version
/home/larry# cp frog passwd passwd_version
/home/larry# 1ls -F

frog passwd passwd_version/
/home/larry# 1ls -F passwd_version

frog passwd

/home/larry#

How did I just use cp? Evidentally, cp can take more than two parameters. (This is the second
line in the command template.) What the above command did is copied all the files listed (frog
and passwd) and placed them in the passwd_version directory. In fact, cp can take any number of
parameters, and interprets the first n — 1 parameters to be files to copy, and the n*® parameter as
what directory to copy them too.

You cannot rename files when you copy more than one at a time—they always keep their short
name. This leads to an interesting question. What if I type cp frog passwd toad, where frog and
passwd exist and toad isn’t a directory? Try it and see.

4.4.2 Pruning Back with rm

rm [-i] filel file2 ... fileN

Now that we’ve learned how to create millions of files with cp (and believe me, you'll find new
ways to create more files soon), it may be useful to learn how to delete them. Actually, it’s very
simple: the command you’re looking for is rm, and it works just like you’d expect: any file that’s a
parameter to rm gets deleted.

For example:

/home/larry# 1ls -F

frog passwd passwd_version/
/home/larry# rm frog toad passwd

rm: toad: No such file or directory
/home/larry# 1ls -F

passwd_version/

/home/larry#

34 CHAPTER 4. THE UNIX SHELL

As you can see, rm is extremely unfriendly. Not only does it not ask you for confirmation, but
it will also delete things even if the whole command line wasn’t correct. This could actually be
dangerous. Consider the difference between these two commands:

/home/larry# 1ls -F

toad frog/

/home/larry# 1ls -F frog
toad

/home/larry# rm frog/toad
/home/larry#

and this

/home/larry# rm frog toad
rm: frog is a directory
/home/larry# 1ls -F

frog/

/home/larry#

As you can see, the difference of one character made a world of difference in the outcome of the
command. It is vital that you check your command lines before hitting !

4.4.3 A Forklift Can Be Very Handy

mv [-i] old-name new-name
mv [-i filel file2 ... fileN new-directory

Finally, the other file command you should be aware of is mv. mv looks a lot like cp, except that
it deletes the original file after copying it. It’s a lot like using cp and rm together. Let’s take a look
at what we can do:

/home/larry# cp /etc/passwd .
/home/larry# 1ls -F

passwd

/home/larry# mv passwd frog
/home/larry# 1ls -F

frog

/home/larry# mkdir report
/home/larry# mv frog report
/home/larry# 1ls -F

report/

/home/larry# 1ls -F report
frog

/home/larry#

As you can see, mv will rename a file if the second parameter is a file. If the second parameter is
a directory, mv will move the file to the new directory, keeping it’s shortname the same.

4.4. MOVING INFORMATION 35

You should be very careful with mv—it doesn’t check to see if the file already exists, and will
remove any old file in its way. For instance, if T had a file named frog already in my directory
report, the command mv frog report would delete the file ~/report/frog and replace it with
~/frog.

In fact, there is one way to make rm, cp and mv ask you before deleting files. All three of these
commands accept the -i option, which makes them query the user before removing any file. If you
use an alias, you can make the shell do rm -i automatically when you type rm. You’ll learn more
about this later in Section 9.1.3 on page 90.

36

CHAPTER 4. THE UNIX SHELL

Chapter 5

The X Window System

The nice thing about standards is that there are so many of them to choose from.
Andrew S. Tanenbaum

This chapter only applies to those using the X Window System. If you encounter a screen with
multiply windows, colors, or a cursor that is only movable with your mouse, you are using X. (If
your screen consists of white characters on a black background, you are not currently using X. If
you want to start it up, take a look at Section 5.1.)

5.1 Starting and Stopping the X Window System

5.1.1 Starting X

Even if X doesn’t start automatically when you login, it is possible to start it from the regular text-
mode shell prompt. There are two possible commands that will start X, either startx or xinit.
Try startx first. If the shell complains that no such command is found, try using xinit and see if
X starts. If neither command works, you may not have X installed on your system—consult local
documentation for your distribution.

If the command runs but you are eventually returned to the black screen with the shell prompt,
X is installed but not configured. Consult the documentation that came with your distribution on
how to setup X.

5.1.2 Exiting X

Depending on how X is configured, there are two possible ways you might have to exit X. The first
is if your window manager controls whether or not X is running. If it does, you’ll have to exit X
using a menu (see Section 5.4.8 on page 43). To display a menu, click a button on the background.

37

38 CHAPTER 5. THE X WINDOW SYSTEM

The important menu entry should be “Exit Window Manager” or “Exit X” or some entry con-
taining the word “Exit”. Try to find that entry (there could be more than one menu—try different
mouse buttons!) and choose it.

The other method would be for a special xterm to control X. If this is the case, there is probably
a window labeled “login” or “system xterm”. To exit from X, move the mouse cursor into that
window and type “exit”.

If X was automatically started when you logged in, one of these methods should log you out.
Simply login again to return. If you started X manually, these methods should return you to the
text mode prompt. (If you wish to logout, type logout at this prompt.)

5.2 What is The X Window System?

The X Window System is a distributed, graphical method of working developed primarily at the
Massachusetts Institute of Technology. It has since been passed to a consortium of vendors (aptly
named “The X Consortium”) and is being maintained by them.

The X Window System (hereafter abbreviated as “X”!) has new versions every few years, called
releases. As of this writing, the latest revision is X11R6, or release six. The eleven in X11 is officially
the version number but there hasn’t been a new version in many years, and one is not currently
planned.

There are two terms when dealing with X that you should be familiar. The client is a X program.
For instance, xterm is the client that displays your shell when you log on. The server is a program
that provides services to the client program. For instance, the server draws the window for xterm
and communicates with the user.

Since the client and the server are two separate programs, it is possible to run the client and the
server on two physically separate machines. In addition to supplying a standard method of doing
graphics, you can run a program on a remote machine (across the country, if you like!) and have it
display on the workstation right in front of you.

A third term you should be familiar with is the window manager. The window manager is a
special client that tells the server where to position various windows and provides a way for the user
to move these windows around. The server, by itself, does nothing for the user. It is merely there
to provide a buffer between the user and the client.

5.3 What’s This on my Screen?

When you first start X, several programs are started. First, the server is started. Then, several
clients are usually started. Unfortunately, this is not standardized across various distributions. It is
likely that among these clients are a window manager, either fvwm or twm, a prompt, xterm, and a
clock, xclock.

IThere are several acceptable ways to refer to The X Window System. A common though incorrect way of referring
to X is “X Windows”.

5.3. WHAT’S THIS ON MY SCREEN? 39

Figure 5.1 An annotated example of a standard X screen. In this example, the user is running twm.
The standard clock has been replaced by a transparent clock called oclock.

emacgzEmousehouse yutq (%] xcongole *

larry 22443 0,0 0 228 7 5 1322 0100 Ausr/liblemacss19,29/1
SE-unknown—1 i emacsserver
larry 22892 0.5 268
larry 22893 1, 816
larry 22539 838
root 10, 848

root . 0 0:00 kernel bdflush
root . 840 ? 0:00 update {(bdflush}
:ggz g : 0201 /shin/syslogd ousehouse.rutgers.edu
rnnt o uffers Files Tools Jdit Search LaTeX Command Help
:ggt 00 inetd 2 ewconmand{sbttindex} [P index 41BNt #1333 M
oot X 00 Ipd 2 ewcomnand{vettindes L1 Mindecisd @0 w1k 131
root . —/ 5 05 Ausr/lib/sendmail ewcommand{simpindel110index{#1 bold}) & these will print the
oot Bl wid 5 00 getty # number in boldface
48 501 5 00 getty 2 ewconnand{yimptYindex 11N index{#1B{00kt #13 [bold}:

436 7§ 00 AusreH1IREAbindcdm : ewcomnand{5boJAF[110ME #13 ¥ this is needed for the “imp#index

2980 7 5 H 14 Ausr/R11REDindR # conmands

1082 7 § 0 -z

B3 7 5 H +00 xconsole —icon er]u bar becauze 1 want a small space after it

90 7§ H 01 xterm -ls . i

272 502 5 H 100 Azbindugetty £ reneuconmand et MM boxhaf returndt,

:wnewcommand{heof FHskey{Ctrl-d}} 2 shorteut like “ret

change the floatstyle for figure
loatstyle{ruled:
estylefloat{Figurek

Raise
Lowrer

ubzer

Refresh Screen meny bar iz a collection of commands acceszible using the mouse,
FreEns r instance., O\t emacs} s menu bar is shown in

$ro| I bar _ gure™sref{x1l-nenu-bar}, Each word iz a category heading of
AutoRaise mmands, {4sf Filel deals with commands that bring up new files and

tzave files. By conwention, this is also the category that contains
Ethe commands to quit the program,

Delete .

Kill - begindfigureXlth]]sbel {xdl-menu-bar:

2 \beginicentert

s hepsfigifile=ps—files/screen—shot-2,ps, width=\textwidth}

Restart Window Manager :endicenter:

t Ezit Window Manager sptiond{stt emace} will change its menu bar depending on the tupe of
roo mer]u file you're working on, Here is one possible menu bar.}

nd{figurel

5.3.1 XClock

xclock [-digital] [-analog] [-update seconds] [-hands color]

T’ll explain the simpliest one first: xclock functions exactly as you’d expect it would. It ticks off
the seconds, minutes and hours in a small window.

No amounts of clicking or typing in xclock’s window will affect it—that’s all it does. Or is it?
In fact, there are various different options you can give to the program to have it act in different
ways. For instance, xclock -digital will create a digital clock. xclock -update 1 will create a
second hand that moves every second, while —update 5 will create a second hand that moves every
5 seconds.

For more information on xclock’s options, consult its manpage—man xclock. If you’re going to
try running a few of your own xclocks, you should probably read Section 6.4 (Multitasking) to learn

40 CHAPTER 5. THE X WINDOW SYSTEM

how to run them in addition to your current programs. (If you run an xclock in the foreground—the
usual way of running a program—and want to get out of it, type 2

5.3.2 XTerm

The window with a prompt in it (something that probably looks like /home/larry#) is being con-
trolled by a program called xterm. xterm is a deceptively complicated program. At first glance,
it doesn’t seem to do much, but it actually has to do a lot of work. xterm emulates a terminal so
that regular text-mode Unix applications work correctly. It also maintains a buffer of information
so that you can refer back to old commands. (To see how to use this, look at Section 5.6.3.)

For much of this book, we’re going to be learning about the Unix command-line, and you’ll find
that inside your xterm window. In order to type into xterm, you usually have to move your mouse
cursor (possibly shaped like an “X” or an arrow) into the xterm window. However, this behavior is
dependent on the window manager.

One way of starting more programs under X is through an xterm. Since X programs are standard
Unix programs, they can be run from normal command prompts such as xterms. Since running a
long term program from a xterm would tie up the xterm as long as the program was running, people
normally start X programs in the background. For more information about this, see Section 6.4.

5.4 Window Managers

On LINUX, there are two different window managers that are commonly used. One of them, called
twm is short for “Tab Window Manager”. It is larger than the other window manager usually used,
fvwm. (fvwm stands for “F(?) Virtual Window Manager”—the author neglected to tie down exactly
what the f stood for.) Both twm and fvwm are highly configurable, which means I can’t tell you
exactly what keys do what in your particular setup.

To learn about twm’s configuration, look at Section 9.2.1. fvwm’s configuration is covered in
Section 9.2.2.

5.4.1 When New Windows are Created

There are three possible things a window manager will do when a new window is created. It is
possible to configure a window manager so that an outline of the new window is shown, and you are
allowed to position it on your screen. That is called manual placement. If you are presented with
the outline of a window, simply use the mouse to place it where you wish it to appear and click the
left mouse button.

It is also possible that the window manager will place the new window somewhere on the screen
by itself. This is known as random placement.

Finally, sometimes an application will ask for a specific spot on the screen, or the window manager
will be configured to display certain applications on the same place of the screen all the time. (For

5.4. WINDOW MANAGERS 41

instance, I specify that I want xclock to always appear in the upper right hand corner of the screen.)

5.4.2 Focus

The window manager controls some important things. The first thing you’ll be interested in is
focus. The focus of the server is which window will get what you type into the keyboard. Usually
in X the focus is determined by the position of the mouse cursor. If the mouse cursor is in one
xterm’s window?, that xterm will get your keypresses. This is different from many other windowing
systems, such as Microsoft Windows, OS/2, or the Macintosh, where you must click the mouse in
a window before that window gets focus. Usually under X, if your mouse cursor wanders from a
window, focus will be lost and you’ll no longer be able to type there.

Note, however, that it is possible to configure both twm and fvwm so that you must click on or
in a window to gain focus, and click somewhere else to lose it, identical to the behavior of Microsoft
Windows. Either discover how your window manager is configured by trial and error, or consult
local documentation.

5.4.3 Moving Windows

Another very configurable thing in X is how to move windows around. In my personal configuration
of twm, there are three different ways of moving windows around. The most obvious method is to
move the mouse cursor onto the title bar and drag the window around the screen. Unfortunately,
this may be done with any of the left, right, or middle buttons®. (To drag, move the cursor above
the title bar, and hold down on the button while moving the mouse.) Most likely, your configuration
is set to move windows using the left mouse buttons.

Another way of moving windows may be holding down a key while dragging the mouse. For
instance, in my configuration, if T hold down the key, move the cursor above a window, I can
drag the window around using the left mouse button.

Again, you may be able to understand how the window manager is configured by trial and error,
or by seeing local documentation. Alternatively, if you want to try to interpret the window manager’s
configuration file, see Section 9.2.1 for twm or Section 9.2.2 for fvwm.

5.4.4 Depth

Since windows are allowed to overlap in X, there is a concept of depth. Even though the windows and
the screen are both two dimensional, one window can be in front of another, partially or completely
obscuring the rear window.

There are several operations that deal with depth:

2You can have more then one copy of xterm running at the same time!
3Many PCs have only two button mice. If this is the case for you, you should be able to emulate a middle button
by using the left and right buttons simultaneously.

42 CHAPTER 5. THE X WINDOW SYSTEM

¢ Raising the window, or bringing a window to the front. This is usually accomplished by
clicking on a window’s title bar with one of the buttons. Depending on how the window
manager is configured, it could be any one of the buttons. (It is also possible that more then
one button will do the job.)

e Lowering the window, or pushing the window to the back. This can generally be accomplished
by a different click in the title bar. It is also possible to configure some window managers so
that one click will bring the window foward if there is anything over it, while that same click
will lower it when it is in the front.

e Cycling through windows is another operation many window managers allow. This brings
each window to the front in an orderly cycle.

5.4.5 Iconization

There are several other operations that can obscure windows or hide them completely. First is the
idea of “iconization”. Depending on the window manager, this can be done in many different ways.
In twm, many people configure an icon manager. This is a special window that contains a list of
all the other windows on the screen. If you click on a name (depending on the setup, it could be
with any of the buttons!) the window disappears—it is iconified. The window is still active, but you
can’t see it. Another click in the icon manager restores the window to the screen.

This is quite useful. For instance, you could have remote xterms to many different computers
that you occasionally use. However, since you rarely use all of them at a given time, you can keep
most of the xterm windows iconified while you work with a small subset. The only problem with
this is it becomes easy to “lose” windows. This causes you to create new windows that duplicate
the functionality of iconified windows.

Other window managers might create actual icons across the bottom of the screen, or might just
leave icons on the root window.

5.4.6 Resizing

There are several different methods to resize windows under X. Again, it is dependent on your
window manager and exactly how your window manager is configured. The method many Microsoft
Windows users are familiar with is to click on and drag the border of a window. If your window
manager creates large borders that change how the mouse cursor looks when it is moved over them,
that is probably the method used to resize windows.

Another method used is to create a “resizing” button on the titlebar. In Figure 5.3, a small
button is visible on the right of each titlebar. To resize windows, the mouse is moved onto the resize
button and the left mouse button is held down. You can then move the mouse outside the borders
of the window to resize it. The button is released when the desired size has been reached.

5.5. X ATTRIBUTES 43

5.4.7 Maximization

Most window managers support maximization. In twm, for instance, you can maximize the height,
the width, or both dimensions of a window. This is called “zooming” in twm’s language although I
prefer the term maximization. Different applications respond differently to changes in their window
size. (For instance, xterm won’t make the font bigger but will give you a larger workspace.)

Unfortunately, it is extremely non-standard on how to maximize windows.

5.4.8 Menus

Another purpose for window managers is for them to provide menus for the user to quickly accomplish
tasks that are done over and over. For instance, I might make a menu choice that automatically
launches Emacs or an additional xterm for me. That way I don’t need to type in an xterm—an
especially good thing if there aren’t any running xterms that I need to type in to start a new
program!

In general, different menus can be accessed by clicking on the root window, which is an immovable
window behind all the other ones. By default, it is colored gray, but could look like anything.* To
try to see a menu, click and hold down a button on the desktop. A menu should pop up. To make
a selection, move (without releasing the mouse button) the cursor over one of the items any then
release the mouse button.

5.5 X Attributes

There are many programs that take advantage of X. Some programs, like emacs, can be run either
as a text-mode program or as a program that creates its own X window. However, most X programs
can only be run under X.

5.5.1 Geometry

There are a few things common to all programs running under X. In X, the concept of geometry
is where and how large a window is. A window’s geometry has four components:

e The horizontal size, usually measured in pixels. (A pixel is the smallest unit that can be
colored. Many X setups on Intel PCs have 1024 pixels horizontally and 768 pixels vertically.)
Some applications, like xterm and emacs, measure their size in terms of number of characters
they can fit in the window. (For instance, eighty characters across.)

e The vertical size, also usually measured in pixels. It’s possible for it to be measured in char-
acters.

40ne fun program to try is called xfishtank. It places a small aquarium in the background for you.

44 CHAPTER 5. THE X WINDOW SYSTEM

e The horizontal distance from one of the sides of the screen. For instance, +35 would mean
make the left edge of the window thirty-five pixels from the left edge of the screen. On the
other hand, -50 would mean make the right edge of the window fifty pixels from the right edge
of the screen. It’s generally impossible to start the window off the screen, although a window
can be moved off the screen. (The main exception is when the window is very large.)

e The vertical distance from either the top or the bottom. A positive vertical distance is measured
from the top of the screen; a negative vertical distance is measured from the bottom of the
screen.

All four components get put together into a geometry string that looks like: 503x73-78+0. (That
translates into a window 503 pixels long, 73 pixels high, put near the top right hand corner of the
screen.) Another way of stating it is hsizexvsizet+hplacetvplace.

5.5.2 Display

Every X application has a display that it is associated with. The display is the name of the screen
